A trajectorial interpretation of the dissipations of entropy and Fisher information for stochastic differential equations
نویسندگان
چکیده
We introduce and develop a pathwise description of the dissipation of general convex entropies for continuous time Markov processes, based on simple backward martingales and convergence theorems with respect to the tail sigma field. The entropy is in this setting the expected value of a backward submartingale. In the case of (non necessarily reversible) Markov diffusion processes, we use Girsanov theory to explicit its Doob-Meyer decomposition, thereby providing a stochastic analogue of the well known entropy dissipation formula, valid for general convex entropies (including total variation). Under additional regularity assumptions, and using Itô’s calculus and ideas of Arnold, Carlen and Ju [2], we obtain a new Bakry Emery criterion which ensures exponential convergence of the entropy to 0. This criterion is non-intrisic since it depends on the square root of the diffusion matrix, and cannot be written only in terms of the diffusion matrix itself. Last, we provide examples where the classic Bakry Emery criterion fails, but our non-intrisic criterion ensuring exponential convergence to equilibrium applies without modifying the law of the diffusion process.
منابع مشابه
Study on efficiency of the Adomian decomposition method for stochastic differential equations
Many time-varying phenomena of various fields in science and engineering can be modeled as a stochastic differential equations, so investigation of conditions for existence of solution and obtain the analytical and numerical solutions of them are important. In this paper, the Adomian decomposition method for solution of the stochastic differential equations are improved. Uniqueness and converg...
متن کاملApplication of new basis functions for solving nonlinear stochastic differential equations
This paper presents an approach for solving a nonlinear stochastic differential equations (NSDEs) using a new basis functions (NBFs). These functions and their operational matrices are used for representing matrix form of the NBFs. With using this method in combination with the collocation method, the NSDEs are reduced a stochastic nonlinear system of equations and unknowns. Then, the error ana...
متن کاملStochastic differential equations and integrating factor
The aim of this paper is the analytical solutions the family of rst-order nonlinear stochastic differentialequations. We dene an integrating factor for the large class of special nonlinear stochasticdierential equations. With multiply both sides with the integrating factor, we introduce a deterministicdierential equation. The results showed the accuracy of the present work.
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملStochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کامل